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Summary 
A major challenge to the development of long-term projections of shoreline changes is 

to identify, address and model the coastal processes responsible for them. Future coastal 
processes, either longshore or cross-shore, are primarily induced by coastal drivers such as 
mean sea level, waves, storm surges and tides, will be affected by global and regional 
climate change, and hence are uncertain. This contribution aims at identifying best 
practices in the assessment of climate chance-induced shoreline change including 
uncertainty estimates. For this purpose, we (1) describe the drivers and processes shaping 
the shoreline and how climate change will affect them; (2) analyse uncertainty sources, 
their propagation and management options; (3) review existing modelling frameworks 
developed over the last decade to predict future impacts on shoreline change due to 
climate change and variability, emphasizing how climate change is considered and the way 
uncertainties are addressed; and (4) discuss whether a best approach can be identified and 
provide a set of recommendations. 
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1. Introduction  
Sandy areas are extraordinary complex and highly dynamic systems that may undergo 

changes over a wide range of temporal and spatial scales (Stive et al., 2002). These changes 
entail from small-scale fluctuations due to the formation of beach cusps; to large-scale 
changes produced by episodic extreme weather events, storm grouping, seasonal weather 
patterns and long-term natural- and human-induced forcing (Miller and Dean, 2004). The 
effects of nearshore winds, water levels, breaking waves and turbulence within the surf 
zone add therefore a level of complexity greater than in hydrodynamics (Dean and 
Dalrymple, 2001), and, unfortunately, our capacity to understand and model this variability 
remains still limited (Stive et al., 2002).  

Furthermore, the increasing need for risk-based informed decisions and climate-change 
adaptation planning requires long-term (i.e., multidecadal to centennial timescales) 
shoreline change projections to be more reliable than ever before. For example, they can 
be used to define setback lines and plan relocation of coastal assets, or to anticipate costs 
associated to adaptation options such as sand nourishment. However, modelling shoreline 
changes at these timescales is not easy for at least three reasons. First, long-term shoreline 
migration involves short-and long-term processes interaction and coupling beyond a few 
decades. Although this has been recognised in literature (Ranasinghe, 2016; Toimil et al., 
2017), there is still no consensus on how best to model these complex interplays. Second, 
climate change-induced variations in these short- and long-term forcings are likely to have 
significant effects on shoreline change. While assuming a rise in mean sea level and no 
changes storminess is common practice (e.g., Ranasinghe et al., 2012), little efforts have 
been undertaken to include future waves, storm surge and river flow projections, although 
they are known important evolution factors at decadal timescales (e.g., Barnard et al., 
2015; Castelle et al., 2018). Finally, the uncertainty in long-term shoreline change estimates 
is high. 

Within this context, the present report seeks to provide an insight into the existing 
modelling frameworks conceived to assess long-term shoreline change driven by climate 
change and variability, emphasizing how climate change effects are incorporated and the 
way uncertainties are addressed.  A secondary target of this research is to determine if we 
can identify a best approach to estimate climate change impacts on shoreline changes. The 
scope of this review is limited to mainland sandy beaches in temperate environments (i.e., 
excluding polar and tropical coasts, affected by seasonal ice and coral-related processes), 
considering both uninterrupted and inlet-interrupted coasts which are unaffected by 
human interventions. Inlet-related effects are limited to the impacts these systems can 
have on the adjacent beaches, disregarding any other morphodynamic interaction among 
the elements involved. Our focus is on holistic modelling strategies attempting to represent 
physical processes explicitly, therefore excluding multicriteria approaches addressing the 
need to identify the most vulnerable locations in the context of sea level rise (Gornitz, 
1991). We consider the most relevant studies developed over the last decade that 
implement appropriate complexity modelling frameworks, using simplified surrogate 
models to quantify the contribution of each coastal process to the sedimentary budget 
(French et al., 2015).   
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The remaining of the report is structured as follows. Section 2 examine the main drivers 
and processes responsible for shoreline change. Section 3 describes uncertainty as well as 
its origin, propagation, accumulation and management options. Section 4 reviews existing 
frameworks to assess climate-change effects on shoreline changes. Finally, Section 5 
discusses whether a best approach is likely to be identified and provides a set of 
recommendations. 
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2. Climate change-driven shoreline changes 

2.1 A framework for the assessment of climate change-driven 
shoreline changes 

To respond to climate change efficiently, we need to anticipate its impacts. Since some 
of these impacts are expected to have occurred in the past, detection and attribution offer 
a form of validating and refining our projections about future changes (Cramer et al., 2014), 
allowing to reduce uncertainty (Karl and Trenberth, 2003). Although such sort of 
extrapolation faces many limitations due to the complex and non-linear behaviour of the 
systems and because the absence of past impacts cannot constitute evidence against the 
possibility of future impacts, it can provide a valuable contribution to risk assessments 
(Stone et al., 2013). However, even whether it is possible to detect the impact of climate 
change on a system, more detailed understanding is required to assess attribution, which 
indicates the magnitude of this impact in relation to the influences of additional factors and 
natural variability. This is particularly challenging for coastal erosion due to the lack of high-
resolution, continuous and long-term observations (i.e. more than 50-year records) of 
shoreline change, and because isolating the erosion induced by climate change involves a 
precise evaluation of the effects of all other external factors (e.g., natural variability and 
human-related activities) (Le Cozannet et al., 2014). The latter has in turn a double 
constraint – climate change in conjunction with other drivers can be non-linear and non-
local in both space and time, implying lagged responses and trans-regional effects hard to 
be understood, disentangled and quantified; and the ability of many beaches to self-adapt 
to climate change further aggravates the problem (Nicholls et al., 2016; Stone et al., 2013; 
Cramer et al., 2014). Given these limitations, it may well take several years for attribution 
to make significant advance. Consequently, the prospective modelling frameworks 
available today still lack a proper validation.  

For immediate needs, however, prospective modelling still remains needed to guide 
decision. Hence, a reference modelling framework displaying all the components required 
to assess shoreline changes may provide useful guidance on the use of data concerning 
climate change-driven shoreline changes and the strategic development and application of 
numerical schemes most appropriate for their modelling. Fig. 1 shows a conceptual scheme 
containing key components that may be involved in the assessment of shoreline changes 
induced by climate change. The first challenge when it comes to develop future projections 
of coastal erosion – namely future shoreline evolution, storm erosion or their combined 
effect in the short-, mid- or long-term (box 4 in Fig. 1) – is to identify, address and model 
the coastal processes responsible for them (box 2 in Fig. 1). These coastal processes are 
triggered by coastal drivers (e.g., mean sea level, waves, storm surges, tides, river flow) 
which may well be affected, whether directly or indirectly, by global and regional climate 
change (box 1 in Fig. 1). Modelling coastal processes is of great complexity, and depending 
on the characteristics of the coast, the data available and the models used, certain physical 
processes (e.g., shoreline recovery, storm grouping, geomorphic/human constraints, inlet-
induced effects) may be considered (box 3 in Fig. 1). Uncertainty arises from different 
sources and is introduced at each step, propagating through the whole process. There are 
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many approaches to address uncertainty (box 5 Fig. 1), and their robustness differs, but 
depending on the impact of each source of uncertainty on the final model outcome, the 
most complex approach may not be necessary. 

 
FIGURE 1 COMPONENTS OF A CLIMATE CHANGE-DRIVEN SHORELINE CHANGE FRAMEWORK.  

 
Coastal processes responsible for shoreline change (box 2 in Fig. 1) and climate change-

driven coastal drivers and their effects on shoreline changes (box 1 in Fig. 1) are discussed 
below. 

2.2 Coastal processes responsible for shoreline change 

Both planform and beach profile shapes are mainly due but not limited to the combined 
action of mean sea level, storm surges, tides and wave conditions in the profile active zone 
(Dean and Dalrymple, 2001; Ranasinghe, 2016). In overall terms, waves set in motion the 
sediment and give rise to nearshore currents that carry that sediment, known as littoral 
transport, alongshore and/or cross-shore. Longshore sediment transport mostly results 
from longshore currents driven by waves breaking obliquely to the shoreline, but also from 
other longshore currents such as tidal currents in constrained areas (e.g., along the English 
Channel). These currents can carry sediment offshore if they turn seaward and become rip 
currents. Cross-shore sediment transport is primarily caused by wave- or wind-induced 
mean cross-shore flows and undertow and is largely responsible for the existence of 
sandbars and other beach profile changes (Dean and Dalrymple, 2001), which are more 
prevalent during coastal storms. Extreme weather events are often accompanied by a 
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temporary increase in local mean sea level due to storm surges so that waves are able to 
reach higher elevations of the foreshore (Zang et al., 2004). In regions with high tidal range, 
storm surges may represent a great threat when they coincide with high spring tides (Toimil 
et al., 2017).   

The processes shaping shorelines occur across many different time scales. While 
beaches change constantly under the action of individual waves that set in motion 
sediment and move it about, it is the erosion on the scale of hours and days that is 
responsible for the (cumulative) damage of extreme events (i.e., storm scale) (Dean and 
Dalrymple, 2001). The continued erosion or accretion due to the combined effect of storm 
surges, tides and waves over months and years allowing or not beaches to recover 
determines the mid-term shoreline erosion or accretion (i.e., seasonal to multiannual scale) 
(Miller and Dean, 2004; Dodet et al., 2018). Finally, long-term processes such as relative 
sea-level change, aeolian transport, soil erodibility, chronic fluvial sediment supply and 
gradients in longshore transport are often responsible for long-term shoreline changes (i.e., 
decadal to centennial scale) (Vitousek et al., 2017).  

Therefore, spatial and temporal scales are somewhat related: nearshore cross-shore 
drivers (e.g., waves, storm surges, tides) mainly producing changes in beach profile and 
tending to operate on short- and mid-time scales; and long-term processes largely 
responsible for long-term changes and generally occurring with longer time scales (Miller 
and Dean, 2004). An exception to such generalization is the shoreline change driven by 
long-term sea-level change, which results in a readjustment of the beach profile to the new 
water levels and is a cross-shore response (Miller and Dean, 2004; Toimil et al., 2017). Other 
exceptions include the work developed by Harley et al. (2011), who show how the 
Narrabeen (Australia) pocket beach rotation is driven by longshore variations of cross-
shore sediment transport.   

2.3 Climate change-driven coastal drivers and their effects on 
shoreline changes 

Climate change-driven variations in mean sea level, waves, storm surges, tides, rainfall 
and river flows are expected to influence coastal processes, and hence shoreline changes, 
in many significant ways (Stive et al., 2002; Ranasinghe, 2016). One of the most certain 
impacts of climate change is global sea-level rise (SLR). However, when assessing SLR 
impacts, it is fundamental to consider local SLR rather than global. Local or relative SLR 
comprises both global and regional ocean changes, and local uplift or subsidence 
components induced by both natural and anthropogenic processes. Relative SLR may cause 
the long-term chronic recession of many coasts around the world, either directly (i.e., 
landward and upward displacement of the coast) or indirectly (e.g., inducing sand volume 
being borrowed from inlet systems) (Ranasinghe et al., 2013; Toimil et al., 2017). Under the 
debatable assumption that the nearshore bathymetry will not change, it will also have 
effects on nearshore hydrodynamics, resulting in more instances of extreme level 
thresholds being reached at the shorefront, and the likely amplification of waves, storm 
surges and tides due to changing non-linear interactions (Arns et al., 2017; Idier et al., 
2017). Even moderate relative SLR can lead to a significant increase in the number of 
episodic extreme weather-related recession events (Wahl et al., 2018). In addition, climate 
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change is expected to alter average wave conditions (Hemer et al., 2013; Camus et al., 
2017) leading to increases or decreases in longshore drift (Idier et al., 2013), and changes 
in the magnitude and frequency of oscillation/rotation cycles in embayed beaches 
(Ranasinghe, 2016). This along with projected changes in storm surges (Vousdoukas et al., 
2016) may be able to modify short- and mid-term erosion and accretion patterns. 
Furthermore, climate change may cause important variations in river flows (Nakaegawa et 
al., 2013). This is particularly relevant for inlet-interrupted coasts, where increases or 
decreases in river discharge may produce decreases or increases of shoreline recession, 
respectively (Ranasinghe et al., 2013). Also relevant for coasts adjacent to inlets are climate 
change-driven variations in rainfall/runoff and land use (affecting soil erodibility). These 
will result in increases or decreases in fluvial sediment supply and hence, in decreases or 
increases, respectively, in shoreline retreat (Ranasinghe et al., 2013).  
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3. Uncertainty cascading and management  
Projections of driven coastal hazards for the 21st century in response to different socio-

economic and demographic pathways are necessary to assess climate change shoreline 
changes. A sequence of steps is usually undertaken to produce a climate change projection 
at global and regional scales (top-down or scenario-led approaches, Wilby and Dessai, 
2010). The first step consists in the generation into scenarios of atmospheric greenhouse 
gas (GHG) emissions based on hypothetical socio-economic and demographic pathways. 
Biogeochemical models are used to translate emission scenarios into GHG and aerosol 
concentration scenarios, which are the fundamental input to coupled Atmosphere-Ocean 
Global Climate Models (AOGCMs) to produce global climate projections. These global 
projections can be downscaled to the regional/local scale with the use of dynamical 
downscaling (Regional Climate Models, RCMs) or statistical downscaling methods. For 
example, climate variable relevant for temperate sandy shoreline change assessments that 
have been downscaled so far include sea level projections (Slangen et al., 2014; Kopp et al., 
2014), waves (Hemer et al., 2013), surges (Vousdoukas et al., 2016) and river runoffs 
(Dayon et al., 2018). Bias correction is required before forcing impact models. Uncertainty 
associated to each step of a top-down climate change impact analysis is introduced (see 
Fig. 1), expanding the range of uncertainty through the whole process (cascade process). 
Two sources of uncertainty can be identified: Knowledge Uncertainty due to our poor 
knowledge of the climate change problem, and Intrinsic Uncertainty inherent to the 
problem (Giorgi, 2010). Emission scenarios and internal variability of climate system can be 
considered as Intrinsic Uncertainty and a full range of possible outcomes, particular low-
probability-high impact outcomes, should be provided. The IPCC in the last AR5 provides 
likely range and median values for SLR conditional to four Representative Concentration 
Pathways (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) corresponding to different trajectories of 
GHG emissions. RCPs include implied policy actions to achieve mitigation and were selected 
to have different targets in terms of radiative forcing at 2100. Internal climate variability 
uncertainty is characterized by performing ensembles of transient simulations starting at 
different times in the control period. Concentration scenario uncertainty due to an 
approximate representation of relevant processes in biogeochemical models, AOGCM 
configuration uncertainty due to a different representation of dynamical and physical 
processes, bias uncertainty related to systematic model errors, downscaling approach to 
produce climate information at a scale resolution demanded by impact models and 
shoreline evolution modelling approaches (Le Cozannet et al., 2019), categorized as the 
“bad” (knowledge) uncertainty should be reduced as much as possible advancing in science 
research. Paradoxically, increased knowledge might lead to an increase in uncertainty 
(Giorgi, 2010). 

Probabilistic frameworks (rather than deterministic, single value) are necessary to 
consider the different uncertainty sources. However, an unmanageable number of 
simulations is required to sample the full uncertainty space to cover multiple scenarios, 
model configurations, internal variability, bias and downscaling methods. Generally, 
studies have limited the exploration of the uncertainty space to individual dimension (e.g., 
the quantification of model configuration using a reduced number of GCMs or RCMs for a 
particular scenario). As mention previously, climate-driven coastal drivers such as waves, 



 

11 
 

storm surges, tides, currents, fluvial discharges, and sea level anomalies cause episodic 
beach and dune erosion on timescales of hours to days during storm events while relative 
sea level changes will result in chronic coastline recession on long-term time scale 
(Ranasinghe, 2016).  Shoreline changes result from the combination of multiple drivers 
and/or hazards in the weather and climate domain spanned over multiple temporal scales 
(compound weather and climate events, Zscheischler et al., 2018). Top-down approaches 
are difficult to be implemented to asses climate change impacts associated with multiple 
interacting drivers. For this reason, the effect of climate change has been analysed for each 
driver or hazard independently. For example, in the case of shoreline retreat considering 
only SLR (Le Cozannet et al., 2015; Toimil et al., 2017) as the main climate change driver, or 
the assessment of future sediment transport due to waves changes derived from five RCMs 
under A1B scenario (Casas-Prat el al., 2016).  

The importance of these sources of uncertainty depends on different factors such as the 
time horizon of the projection, the variable under consideration and the scale of interest 
(Giorgi, 2010). In general, scenario and model configuration uncertainty dominate for long 
term climate change (Clark et al., 2016), especially at global scale. The internal variability 
becomes of primary importance for short- and near-term 21st century projections and 
higher order climate statistics. For instance, the uncertainty associated to downscaling 
methods dominates over climate scenario and model uncertainties in global wave climate 
projections (Morim et al., 2018; Hemer et al., 2013). 

SLR can amplify the episodic erosion from storms and drive chronic erosion on sandy 
shorelines (Ranasinghe, 2016). AR5 IPCC sea-level rise projections are obtained by summing 
different contributions as thermal expansion of ocean water, the melting of glaciers, ice 
caps and ice-sheets and changes in land water storage. Sampling the uncertainty of these 
contributions, SLR for the RCPs will “likely” (medium confidence which corresponds to a 
67% probability) be in the 5 to 95% ranges derived from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) climate projections in combination with process-
based models of glacier and ice sheet sur-face mass balance, with possible ice sheet 
dynamical changes assessed from the published literature.  

However, AR5 only projects SLR likely ranges excluding higher magnitudes of ice loss 
which are only implied if less likely outcomes are included. Future impacts on coastal 
shoreline would be underestimated if only SLR projections that characterize just likely sea-
level changes. Upper limits for global SLR by 2100 have been published (Horton et al., 2014; 
Jevrejeva et al., 2014) which combines modelling outcomes with expert knowledge, mainly 
regarding future ice-sheet contributions (Bamber and Aspinall, 2013). Recent studies 
highlight larger inherent uncertainties associated with the potential rapid disintegration of 
the Antarctic Ice Sheet (DeConto and Pollard, 2016). These results have been incorporated 
in updated probabilistic SLR projections (Le Bars et al., 2017; Kopp et al., 2017) and can be 
integrated with other results within a single framework using extra-probabilistic theories 
of uncertainty (Le Cozannet et al., 2017a).  

Local SLR is critical for impact assessment. The spatial variability of local SLR arises from 
regional ocean steric and ocean dynamics effects and non-climatic effects such as glacio-
isostatic adjustment, tectonics and sediment compaction (Wöppelmann and Marcos, 
2016). Probabilistic local SLR projections are obtained combining a joint probability 
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distribution for global mean thermal expansion and regional ocean dynamics derived from 
a CMIP5 ensemble, with glacier mass-balance changes, anthropogenic changes in land-
water storage, ice sheet contributions (expert elicitation in Bamber and Aspinall, 2013, or 
physical model results including ice-shelf hydrofracturing and ice-cliff collapse in DeConto 
and Pollard, 2016) and regional non-climatic effects based upon a spatiotemporal statistical 
model of tide-gauge observations (Kopp et al., 2014; Kopp et al., 2017). Uncertainty 
associated with SLR contributions for each of the individual component has been sampled 
using each time-dependent probability distributions of cumulative contribution. 

The generic approaches identified in literature to address uncertainty in climate change-
driven shoreline change modelling are summarized in Fig. 1 and described in Table 1. They 
include deterministic methods that rely on a single input parameter, model 
parameterization and/or model providing highly uncertain results; ensembles that consider 
a limited number of input parameters, model parametrizations and/or models; 
probabilistic methods that use the probabilistic distribution of input parameters and/or 
model parametrizations requiring multiple model simulations; probabilistic methods plus 
high-end scenarios (e.g., H++ scenarios, Nicholls et al., 2014), which combine probabilistic 
approaches and deterministic values to compute an unlikely outcome with potentially high 
impacts; and extra-probabilistic or possibility methods that seek to assign imprecision to 
probabilistic measures, which can be achieved, for example, by integrating the probabilistic 
information given in the form of confidence intervals and expert judgement (e.g., Ben 
Abdallah et al., 2014; Le Cozannet et al., 2017a). 

 

Approaches to address 
uncertainty 

Definitions adopted in this report 

Deterministic Results are presented in a deterministic way (single value), relying on a 
single input parameter, model parametrization and/or model. For example, a 
single sea level scenario, or a single model for computing the effects of 
longshore or cross-shore transports. 

Ensemble A limited number of input parameters, model parametrizations and/or 
models are used to compute an aggregate of outcomes. 

Probabilistic The uncertainties of the outcome are presented in the form of a 
probabilistic distribution, which relies on probabilistic descriptions of input 
parameters, model parametrizations and/or model. 

Probabilistic plus high-end In addition to the previous probabilistic approach, a single deterministic 
value is used to compute an unlikely outcome with potentially high impacts 
(e.g., H++ scenarios, Nicholls et al., 2014). 

Extra-probabilistic The uncertainties in the outcome are presented in the form of several 
credible probability functions conveying aleatory uncertainties as well as 
uncertainties on the shape of the distribution itself (e.g., Ben Abdallah et al., 
2014; Le Cozannet et al., 2017a). 

TABLE 1 DIFFERENT APPROACHES TOWARD UNCERTAINTIES THAT CAN BE APPLIED AT EACH STEP OF THE ANALYSIS (SEE 

ALSO FIG. 1). 
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4. Frameworks to assess climate change-driven shoreline 
changes  

One major challenge for coastal engineering and science is to develop models for the 
reliable prediction of long-term shoreline change that includes the effects of climate 
change and uncertainty estimates. At present, there is no full satisfactory shoreline-change 
model that allows coupling hydrodynamics, sediment transport and morphology (e.g., as in 
physics-based 2D/3D models); reproducing short-, mid- and long-term shoreline changes 
accurately; and that is not prohibitively expensive, enabling a robust quantification of 
uncertainty. Our still poor understanding of littoral sediment transport, our inability to 
represent fully the hydrodynamics of the surf zone, our current (limited) computational 
resources and the large uncertainties in projected shoreline-change drivers are good 
reasons to think that such “ideal” model may well be several years in the making. However, 
significant progress has been made over the last decade to develop, based on our present 
state of knowledge and resources, a wide range of possible frameworks for the assessment 
of long-term shoreline change within the context of climate change (Ranasinghe et al., 
2012; Toimil et al., 2018; Vitousek et al., 2017). Modelling strategies composed of different 
process-based (or empirical) models responding each of them to cross-shore or long-shore 
processes, and to other sinks or sources that contribute to sediment budget hold much 
promise in this regard. Some of them have proven reliable on reproducing shoreline 
changes over a broad spectrum of relevant time scales to a fair degree of accuracy, while 
allowing addressing uncertainty. 

In what follows, we provide a review of existing frameworks specifically focused on the 
assessment of climate change-driven shoreline changes, for both uninterrupted and inlet-
interrupted coasts, identifying the elements displayed in Fig. 1. The criterion for 
classification is to include the works in the category (or categories) we consider they may 
be relevant for the community. 

4.1 Uninterrupted coasts 

For review purposes, we consider distinguishing between small pocket beaches, where 
longshore transport gradients are often neglected within the sediment budget; long 
embayed beaches, which are subjected to oscillations and rotations caused by climate 
variability, although with small change to mean orientation in the long term (Ranasinghe, 
2016); and open beaches, where both short-term transport and longshore drift play a 
fundamental role in shoreline change.  

4.1.1 Small pocket beaches  

Over the last five decades, the method most widely used to estimate coastal recession 
due to SLR has been the Bruun Rule (Bruun, 1962). The Bruun Rule predicts a landward and 
upward displacement of the cross-shore profile in response to a rise in mean seal level. 
However, determining whether this approach performs within acceptable limits today is 
very complex, as SLR is still a minor contributor to shoreline change on many of the world’s 
coasts. This has led numerous authors to argue against its efficacy, for instance, 
demonstrating its conservationism, recommending it be abandoned (Cooper and Pilkey, 
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2004; Ranasinghe and Stive, 2009), or even offering alternatives (Ranasinghe et al., 2012; 
Toimil et al., 2017). These alternatives often include more generalized versions that 
incorporate additional physical processes, which might be relevant for shoreline change 
over different time scales. For instance, Rosati et al. (2013) presented a modified form of 
the Bruun Rule that deems the full range of parsing cross-shore transport from seaward to 
landward, based on the prevailing storm and surge conditions (i.e., overwash and aeolian 
processes) and whether there is a deficit or surplus of sand in the profile with respect to 
the equilibrium beach profile. The authors illustrated the framework deterministically 
considering a rise in mean sea level of 0.5 m as the only climate-related driver. 

However, as mentioned earlier, any future shoreline change will result from the 
combination of long-term SLR, and short-term waves and local water levels. Two different 
approaches have been identified in this regard in literature: The Probabilistic Coastline 
Recession (PCR) model first developed by Ranasinghe et al., (2012) for Narrabeen Beach 
(Sydney, Australia), and further applied to the same beach on different studies (Wainwright 
et al., 2015; Jongejan et al., 2016), as well as to other beaches (e.g., in the sandy coast of 
Aquitaine in southwestern France,  Le Cozannet et al., 2019); and the methodology 
proposed by Toimil et al. (2017) to manage coastal erosion at the regional scale. The PCR 
model provides probabilistic estimates of net long-term coastal dune recession as a proxy 
for shoreline recession due to the combined effect of storm erosion and global SLR 
projections (Meehl et al., 2007). To that end, and assuming no changes in storminess over 
this century, 110-year time series of storms are generated using joint probability 
distributions of design storm characteristics within a Monte Carlo simulation (Callaghan et 
al., 2008), in which storm grouping is considered to be represented appropriately. For each 
storm, SLR is also occurring, and dune recession is estimated using the process-based dune 
impact model proposed by Larson et al. (2004), allowing for beach recovery between 
storms which is obtained empirically. According to the authors, the bootstrapping method 
employed in the model minimizes the uncertainty associated with predicted probabilistic 
estimates. Toimil et al. (2017) developed a methodology to predict shoreline changes acted 
upon waves, storm surges, astronomical tides, and SLR probabilistically. Based on the small 
changes provided by the statistical projections of waves and storm surges developed by 
the authors within this framework using 40 GCMs, the approach considers the use of 
historical data and a vector autoregressive VAR model (Solari and van Gelder, 2012) to 
generate thousands of 90-year multi-variate hourly time series of these dynamics. The time 
series are combined with the astronomical tide reconstructed over this century and 
regional SLR curves (RCP8.5 mean value and standard deviation, from Slangen et al., 2014) 
into a shoreline evolution model. This model is composed by two modules: cross-shore 
transport due to wave setup, storm surges and astronomical tides following the equilibrium 
model of Miller and Dean (Miller and Dean, 2004); and cross-short transport due to SLR 
following an equilibrium beach profile change model (Bruun, 1962). Data and model enable 
to obtain probabilistic estimates of extreme recessions and long-term shoreline changes, 
as well as to quantify uncertainty. The use of high-resolution time series of coastal drivers 
has the advantage of accounting for storm occurrence and grouping and beach recovery 
without the need of introducing additional variables into the stochastic simulation. Both 
Ranasinghe et al. (2012) and Toimil et al. (2017) probabilistic approaches are a step forward 
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to comply with the new risk-based informed coastal planning frameworks that require 
robust uncertainty estimates. 

4.1.2 Long embayed beaches 

Climate change-driven changes in net longshore sediment transport caused by changes 
in average wave climate may lead to changes in the mean orientation of embayed beaches, 
resulting in their permanent re-alignment (Ranasinghe, 2016). Zacharioudaki and Reeve 
(2011) looked into what the evolution of the coast around Poole Bay (UK) could be under a 
range of variations in future wave characteristics. Changes in mean sea level, tidal range 
and the swell component of wave conditions, although very relevant to shoreline change, 
have been excluded from this study. In that work, the one-line model described in 
Zacharioudaki and Reeve (2010) is used to obtain monthly and seasonal statistics of 
shoreline change for the time-slice 2071-2100 with respect to 1961-1990. In order to 
simulate time series of monthly or seasonal shoreline positions, the model is performed for 
individual 30-year time series of projected waves using two combinations of RCMs and 
GCMs with different resolutions, and with the shoreline set back to its initial shape after 
each shoreline shape outputs are derived. The way authors address uncertainty is using 
nine climate-change scenarios.  

Simpler assessments of shoreline recessions in long embayed beaches include the works 
developed by Snoussi et al (2009) and Alexandrakis et al. (2015). The first used the Bruun 
Rule to determine the upward and landward displacement of the Tangier coast (Morocco) 
associated to three SLR scenarios (global estimates based on Warrick et al., 1996) by 2050 
and 2100. The second obtained shoreline retreats in the beach in front of Rethymnon city 
(Crete Island) for time periods of 10, 20 and 30 years and for three SLR values (IPCC, 2007) 
by applying the Dean (1991) formula. 

4.1.3 Open beaches 

The assessment of climate change-induced shoreline changes in open coasts is of greater 
complexity than in small pocket beaches, since both cross-shore and longshore transport 
need to be considered. Existing works that tackle this issue entail the analysis of future 
wave-driven coastal sediment transport developed by Casas-Prat et al. (2016), the 
assessment of the SLR-induced shoreline response carried out by Dean and Houston (2016), 
and the approach proposed by Vitousek et al. (2017) for predicting shoreline evolution due 
to longshore and cross-shore transport driven by projected waves and SLR. In addition, we 
include the frameworks presented by Le Cozannet et al. (2016, 2018) to address 
uncertainty in future shoreline change. 

Casas-Prat et al. (2016) evaluated the impact on the longshore and cross-shore sediment 
transport along the Catalan coast (Spain) resulting from climate projections obtained from 
five combinations of RCMs and GCMs. Special emphasis is given to how inter-model 
variability translates from wave projections to wave-driven coastal impacts, in this case, 
through waves. The CERC formula and the SBEACH profile evolution model developed by 
Larson and Kraus (1989) are used to compute longshore and cross-shore sand transport 
rates, respectively. The use of non-computationally expensive modelling tools enables the 
assessment of the suitability of each RCM– GCM combination considered to forecast 
changes in coastal dynamics. The approach provides projected absolute change in median 
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longshore transport and storm-basis time series of eroded volumes caused by the impact 
of a wave storm for the time slices 2071-2100 with respect to 1971-2000. The uncertainty 
added by the RCMs to the coastal sediment transport response is quantified by the authors 
through the analysis of the discrepancies in patterns of change of forcing wave parameters. 

Dean and Houston (2016), similar to Stive et al. (1991) and then to Stive (2004), 
proposed a sediment budget with the terms representing all phenomena affecting 
shoreline change. These phenomena include the Bruun-Rule recession, onshore transport, 
sand sources (e.g., beach nourishment), sinks that take sand from the littoral system (e.g., 
ebb shoal growth, dredged material disposed outside the littoral zone), and longshore 
transport gradients. The application used the RCP SLR scenarios (Church et al., 2013) 
enhanced with land subsidence rates as the climate-related driver, and provide projected 
shoreline change rates from 2015 to 2100 assuming beach nourishment at the rate from 
1972 to 2007. The authors address uncertainty using an ensemble of SLR scenarios and 
considering the mean values and standard deviations in both relative SLR scenarios and 
sediment transport rates. 

Le Cozannet et al. (2016) developed a study to quantify uncertainty in the evolution of 
sandy shorelines under the Bruun Rule assumption. They use the sedimentary budget 
proposed by Stive (2004) and probabilistic SLR scenarios based on IPCC (Church et al., 2013) 
to provide future shoreline changes that account for all uncertain hydro-sedimentary 
processes in low- and high-energy coasts. The application considers the case of idealized 
wave-exposed sandy beaches with infinite sand availability and defines realistic probability 
functions for each parameter involved in the sand budget: Bruun-Rule recession, storm 
wave-induced retreat, aeolian transport, other cross-shore effects (e.g., wave-nonlinearity-
driven onshore sand transport), and longshore sedimentary processes in the 
absence/presence of groins. Le Cozannet et al. (2016) constructed the probability functions 
constructed using ranges of typical values provided by Stive (2004) and based on 
observations in the Netherlands and Australia. Finally, the authors propagate the 
uncertainties through the model equation to obtain the shoreline change projections and 
quantify their relative importance by performing a sensitivity analysis. 

Vitousek et al. (2017) proposed a modular approach that integrates longshore and cross-
shore transport induced by GCM-projected waves and SLR (Church et al., 2013), which 
allows it to be applied to both long and small pocket sandy beaches (in the latter case, 
disabling longshore component). The model is composed by longshore transport due to 
waves following the one-line approach (Larson et al., 1997); cross-shore transport due to 
waves using an equilibrium shoreline change model (Yates et al., 2009; Long and Plant, 
2012); and cross-shore transport due to SLR employing an equilibrium beach profile change 
model (Bruun, 1962). The application of the model to the forecast period (2010-2100) 
allows to obtain one instance of how shoreline evolution could be over 90 years driven by 
a single projected time series of wave conditions (one GCM-RCM) and an ensemble of 
seven SLR scenarios. The way the authors address uncertainty is by considering many SLR 
scenarios and with data assimilation based on seasonal wave activity. More recently, 
O’Neill et al. (2018) used this modelling framework to obtain projected 21st century coastal 
flooding in the Southern California Bight considering morphodynamic changes. 
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More recently, Le Cozannet et al. (2019) presented a research work focused on 
estimating the uncertainty of coastal impact models by considering the difference in 
shoreline change projections derived by applying the Bruun Rule and the PCR model 
(described in section 4.1.1) to the Aquitaine coast (France). The application consists of 
setting up a sediment budget in the absence of human interventions, inlets or other major 
sediment sources or sinks in which the future shoreline changes resulting from the 
application of the two coastal impact models combine with longshore gradients in 
sediment transport derived empirically (based on past records). The authors address 
uncertainties though using probabilistic regional sea-level rise projections (Kopp et al., 
2014), incorporating the geodetic uncertainty associated to vertical ground motions and 
considering observed variability of longshore sediment trends and shoreface beach slopes. 

4.2 Inlet-interrupted coasts  

Shorelines in the in the vicinity of inlets (e.g., tide-dominated estuaries, wave-
dominated estuaries, barrier-island inlets, lagoons) are influenced not only by the climate 
change-driven drivers affecting uninterrupted coasts but also by the effects that inlets can 
have in their long-term evolution. This review only considers research works focused on 
assessing inlet-induced climate change impacts on adjacent beaches (mainland).  

Ranasinghe et al. (2013) and Toimil et al. (2017) have focused on studying the climate 
change-driven effects that wave- and tide-dominated estuaries can have in adjacent coasts, 
respectively. Both research works have demonstrated that the no consideration of 
sediment demands and/or supplies in the sediment budget others than the Bruun effect 
(Bruun, 1962) may lead to misleading shoreline change estimates. Ranasinghe et al. (2013) 
addressed this issue by developing a scale-aggregated model for wave-dominated, micro-
tidal environments, which have little or no intertidal flats, backwater marshes or ebb tidal 
deltas. In this work, the four physical processes considered to contribute to shoreline 
change are the SLR-driven Bruun effect (Bruun, 1962), basin infilling due to the SLR-induced 
increase in basin accommodation space, basing volume change due to climate change-
driven increases or decreases in river flow, and increases or decreases in fluvial sediment 
supply. The model is applied deterministically to assess the shoreline change by 2100, and 
no uncertainty estimates are provided. The authors use global projections of SLR, rainfall 
and river flow (Alley et al., 2007). More recently, Toimil et al. (2017) proposed a scale-
aggregated model for tide-dominated, macro-tidal environments in response to climate 
change-modified forcing. Based on the nature of the inlet concerned, the physical 
processes deemed as shoreline-change contributors are SLR-driven landward displacement 
of the coastline (Bruun, 1962), basin infilling due to the SLR-induced increase in basin 
accommodation space, and SLR-driven ebb tidal delta volume change. In this case, fluvial 
sediment supply was considered negligible as the estuaries included in the assessment 
were regulated by dams or permanently dredged. The authors couple the SLR-induced 
shoreline recession due to basin infilling and ebb tidal delta volume change (acting as 
longshore sinks) with the shoreline change model described in section 4.1.1 to obtain 
probabilistic estimates of hourly shoreline evolution from 2010 to 2100, and a robust 
quantification of uncertainty, also in coasts interrupted by tide-dominated estuaries. It 
should be noted that the use of the equilibrium formulation to describe the complex 
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behavior of an inlet is based on simplifying assumptions. For example, considering that the 
estuary and its elements reach dynamic equilibrium state, since the formulation are not 
able to describe neither their temporal evolution nor their spatial distribution. There is also 
a lag between SLR and the system's morphological response. Ranasinghe et al. (2013) 
considered a linearized single-element version of ASMITA (only valid for small inlet-basin 
systems, van Goor et al., 2003), in which they showed that this lag effect could be 
represented by including a coefficient of about 0.5 in the basin-infilling equation. 

ASMITA (Aggregated Scale Morphological Interaction between a Tidal-inlet system and 
the Adjacent coast) is a scale aggregated model originally developed by Stive et al. (1998) 
and based on the conservation of sediment within a three-element system (ebb delta, 
channel, and basin) and the adjacent nearshore area (beach). The model assumes that the 
morphological interaction between the three system elements are due to diffusive 
sediment transport and that the system is in morphological equilibrium if undisturbed. 
When the system is perturbed (e.g. due to SLR), the three system elements change their 
volume and evolve towards an empirically specified dynamic equilibrium state. Under this 
condition, the basin borrows sand from the adjacent beach to satisfy a demand that is 
proportional to the rate of SLR. Hinkel et al. (2013) applied an adapted version of the 
ASMITA model (Stive and Wang, 2003) to carry out a global analysis of erosion of sandy 
beaches due to SLR. The authors developed and applied a simple first-order erosion model 
in which SLR-induced shoreline recession results from the combination of the direct effect 
of profile translation (i.e., the Bruun effect) and the indirect effect of tidal inlets in about 
200 major tidal basin complexes. Global-mean SLR scenarios were obtained with the 
climate model CLIMBER-2 (Petoukhov et al., 2000). Uncertainty in climate was considered 
by using three different climate sensitivities of 1.5 K (low), 3 K (medium) and 4.5 K (high).  
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5. Discussion and recommendations: can we identify a best 
approach?  

The assessment of shoreline changes is a complex site-specific issue. The most influential 
factors comprise the physical characteristics of sediment, local wave and mean sea level 
conditions, the bathymetry, as well as the orientation, configuration and exposure of the 
coast. Climate change is modifying the oceans in many different ways, including changes in 
coastal drivers (e.g., mean sea level, waves, storm surges, tides, river flow) responsible for 
coastal processes, and hence for shoreline change. Depending on the local coastal settings, 
it may not be necessary to consider every option displayed in Fig. 1. None of the existing 
studies can be identified therefore the best approach to address all the casuistry that may 
arise, and a method that allow to select the most appropriate modelling framework for the 
different types of environment in a consistent and transparent way is lacking. Until this 
method is available, the following concluding remarks may be found good practice in this 
field.  

First, we need to look upon the whole range of forcing conditions involved in shoreline 
recession, and any relevant sediment sink and/or source. For example, neglecting the effect 
of waves and storm surges and considering sea-level rise as the only driver for coastal 
erosion may underestimate the impact of climate change and mislead adaptation planning 
in the worst case.  

Second, modelling frameworks should not only ensure consistence among the different 
coastal processes and drivers, but also address physical processes (e.g., shoreline recovery) 
and/or constraints accordingly. For instance, reliable predictions of storm erosion require 
to consider the possibility of storm grouping and beach recovery between storms.  

Third, the progression from event to multidecadal and centennial timescales demands 
increasing generalization of modelling approaches, but a solid understanding of processes 
is still required to support the simplifying assumptions. In addition, we need to strive for 
this generalization not to entail a low resolution of the outcome.  

Finally, the weakest link is the lack of consistency in the management of uncertainty 
across all components of the modelling framework. Some reviewed works address 
uncertainty due to the random nature of waves, storm surges or storm events, but none of 
them includes sea-level rise in probabilistic terms. When working with sea-level rise, 
uncertainty can be addressed to some extent by using the mean value plus/minus the 
standard deviation. However, a similar approach combining likely and high-end scenarios 
has not been explored yet for other important variables such as waves and storminess. All 
these key aspects in relation to the most relevant reviewed papers are provided in Table 2. 
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Coastal processes 
Climate change-

driven coastal hazards 
Physical processes Outcome 

Resolution of 
the outcome 

Approach 
towards uncertainty 

Uninterrupted coasts 

Small pocket beaches 

Rosati et al. (2013) 
Cross-shore (seaward and 
landward) transport 

SLR projections 
 

Seaward transport 
and landward transport 
due to overwash and 
aeolian transport 

Shoreline recession, 
volumetric transport and 
profile changes for a given 
horizon 

Single value 
estimate 

 
Deterministic 

Ranasinghe et al. (2012) 
Cross-shore 

transport 

SLR projections 
(scenarios) and design 
storms 

Storm events, storm 
duration, dune recovery, 
storm grouping 

Storm-basis time 
series of dune erosion 
volumes and recession over 
the 21st century 

Storm-basis 
dune recession. 
Extreme events and 
long-term analysis 

Probabilistic. 
Joint Probability 
Method, 
bootstrapping 
technique (storm 
events) 

Toimil et al. (2017) 
Cross-shore 

transport and longshore 
sinks  

Local waves, 
storm surges, and 
astronomical tides and 
regional SLR 
projections 

Extreme events, 
beach recovery, events 
duration, events grouping, 
SLR-driven Bruun  

Time series of 
shoreline change over the 
21st century. Extreme 
events and long-term 
analysis 

Hourly 
shoreline changes 

 

Probabilistic. 
Stochastic 
generation of waves 
and storm surges and 
SLR standard 
deviation confidence 
levels 

 Long embayed beaches 

Zacharioudaki and 
Reeve (2011) 

Longshore transport 
Wave projections 

(2 RCM-GCM with 
different resolutions) 

Shoreline response 
to the spatial gradients of 
the alongshore 
component of sediment 
transport 

Time series of 
monthly or seasonal 
shoreline positions. One-
line simulations are 
performed for each 
individual 30-year time-
series of waves but with the 
shoreline set back to its 
initial shape after each 
shoreline shape outputs 

Monthly and 
seasonal shoreline 
change statistics 
relative to the 
present 

 

Ensemble of 9 
scenarios and 

statistical 
analysis of 
significance of 
changes (t-test, ks-
test) over wave 
characteristics and 
shoreline changes 

 

 Open beaches 

Casas-Prat et al. 
(2016) 

Cross-shore and 
longshore transport 

Wave projections 
(5 RCM-GCM) 

Long-shore wave 
energy flux, storm events 

Projected absolute 
change in median longshore 
transport and storm-basis 
time series of eroded 
volumes caused by the 
impact of a wave storm 

Annual 
longshore transport 
and storm-basis 
eroded volumes 

Ensemble of 5 
RCM-GCM 

 

Dean and Houston 
(2016) 

Cross-shore 
(seaward and landward) 
and longshore transport, 
sand sinks and sources 

Relative SLR 
projections 

 

SLR-driven Bruun, 
erosion rates due to SLR-
driven ebb shoal growth, 
nourishment rates, 
longshore drift rates 

Averaged shoreline 
change rates (m/yr) for a 
period 

Annual mean 
and standard 
deviation shoreline 
changes 

Ensemble of 4 
RCPs plus standard 
deviation confidence 
levels for each RCP 

Le Cozannet et al. 
(2016) 

Cross-shore and 
longshore transport 

SLR projections 

SLR-driven Bruun, 
Aeolian processes, cross-
shore effects (wave-
nonlinearity-driven 
onshore sediment 
transport), storm waves-
induced retreat, longshore 
processes 

Time series of 
shoreline change over the 
21st century. 

Annual mean 
shoreline change 

Fully 
probabilistic 

Vitousek et al. 
(2017) 

Cross-shore and 
longshore transport and 
long-term trend 
(sinks/sources) 

Wave projections 
(dynamic downscaling 
1 GCM-RCM) and SLR 
projections 

Wave energy, beach 
recovery, storm grouping, 
SLR-driven Bruun 

Time series of 
shoreline change over the 
21st century 

Daily shoreline 
changes 

 

Deterministic 
(waves) and 
ensemble of 7 SLR 
scenarios 

 

Le Cozannet et al. 
(2019) 

Cross-shore and 
longshore transport 

SLR projections 
(scenarios) and design 
storms 

Storm events, storm 
duration, dune recovery, 
storm grouping, longshore 
sediment transport 
gradients 

Time series of 
shoreline change over the 
21st century. 

Annual mean 
shoreline change 

Probabilistic. Joint 
Probability Method, 
bootstrapping 
technique (storm 
events) and 
probabilistic SLR 
projections 

 Inlet-interrupted coasts 

Ranasinghe et al. 
(2013) 

Cross-shore 
transport and longshore 
sinks 

IPCC AR4 
projections of SLR, 
rainfall and river flow 

SLR-driven Bruun and 
estuary effects (basin 
infilling, river flow-driven 
basin volume change and 
rainfall/runoff-driven 
changes in fluvial 
sediment supply) 

Total potential worst-
case CC-driven coastline 
change by 2100 

Single value 
estimate 

 
Deterministic 

Toimil et al. (2017) 
Cross-shore 

transport and longshore 
sinks 

Local waves, 
storm surges, and 
astronomical tides and 
regional SLR 
projections 

Extreme events, 
beach recovery, events 
duration, events grouping, 
SLR-driven Bruun and 
estuary effects (ebb tidal 
delta rise and basin 
infilling)  

Time series of 
shoreline change over the 
21st century. Extreme 
events and long-term 
analysis 

Hourly 
shoreline changes 

 

Probabilistic. 
Stochastic 
generation of waves 
and storm surges and 
SLR standard 
deviation confidence 
levels 

Hinkel et al. (2013) 
Cross-shore 

transport and longshore 
sinks 

Global-mean SLR 
projections 

SLR-driven Bruun and 
estuary effects (basin 
infilling) 

Nourishment 

Land loss rates 
(km2/yr) over the 21st 
century 

Global annual 
shoreline recession 

Ensemble of 6 
global SRL scenarios 
and three different 
climate sensitivities 
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TABLE 2 SUMMARY OF THE KEY ELEMENTS OF THE MOST RELEVANT EXISTING MODELLING FRAMEWORKS TO ASSESS 

CLIMATE CHANGE-DRIVEN SHORELINE CHANGES THAT HAVE DEVELOPED OVER THE LAST DECADE (IN THE ORDER OF THEIR 

APPEARANCE IN THE TEXT). 

 
Future shoreline changes are uncertain and will probably remain so over the coming 

decades. Stakeholder’s priorities and needs are crucial and ultimately the key factor in 
determining the approach toward uncertainty more appropriate in every particular case. A 
promising way forward in this regard may well consist in reversing current shoreline 
change-modelling procedures. This involves shifting from predicting top-down approaches 
that use climate change scenarios for the assessment of impacts (e.g., shoreline changes) 
to resilience bottom-up approaches focused on identifying stakeholder’s needs and 
preferences (e.g., risk aversion) and applying the appropriate modelling and uncertainty 
frameworks according to these needs. The bottom-up approach is central to the concept 
of climate services supported by ERA4CS (Hewitt et al., 2012; Brasseur and Gallardo, 2016; 
Monfray and Bley, 2016; Le Cozannet et al., 2017b). As an illustration, Table 3 provides 
questions identified as relevant to stakeholders (e.g., adaptation practitioners) and 
information needs. These research needs raise in turn the following issues to coastal 
modelers when coming to develop future projections of shoreline change: (1) Is it necessary 
to consider the uncertainty associated to all possible scenarios, including those with high 
impacts, which have low probabilities or whose probability is difficult to quantify? (2) Is it 
necessary to disentangle the uncertainty associated to each of the drivers deemed? (3) 
Which modelling and uncertainty frameworks best satisfy stakeholder’s preferences and 
risk aversion? 

 
Question from adaptation 

practitioners 
Reasons for information needs Research area 

Can we quantify the impacts 
of climate change or sea level 
rise in current shoreline 
changes? 

As adaptation is a slow process 
(decades for relocation), there is a need for 
early detection of climate induced shifts 
toward erosion for a timely implementation 
of actions 

Detection or attribution of 
climate change impacts (Cramer 
et al., 2014) 

Can we identify when 
climate change will modify 
current sedimentary processes? 

Identify when and where current 
adaptation strategies (e.g., nourishment) 
may fail and new approaches (e.g., 
relocation) will be required. 

Times of emergence of 
climate-induced shifts toward 
erosion (Le Cozannet et al., 
2016) 

Can we quantify future 
shoreline positions and rates at 
specific time steps in the 
future? 

Planning adaptation, establishing 
adaptation pathways. 

Coastal impact studies (see 
Table 2) 

Can we quantify the impacts 
of different adaptation options? 

Evaluate which adaptation option may 
best satisfy stakeholder’s preferences. 

Evaluation of adaptation 
(Hallegatte, 2009) 

TABLE 3 INFORMATION NEEDS REGARDING SHORELINE CHANGE PROJECTIONS AND KEY CHALLENGES FOR COASTAL 

MODELLING 

 
Uncertainty is not only related to sea level rise but also to other coastal processes 

affecting mean sea level (e.g., vertical land motion) and sediment dynamics (e.g., effects of 
wave and currents, sediment holes and sources, or human impacts). Their characterization 
needs to consider specific needs, such as enabling local stakeholders and decision-makers 
to better position regulatory scenarios (if any) of sea level rise with respect to all possible 
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shoreline and potentially define an acceptable level of risk loss that is more cautious than 
regulation, so as to make assets more secure. The choice of a framework for uncertainty 
analysis depends on the quantity, the quality and the relevance of the available data, as 
well as on the degree of risk aversion of decision-makers. 

Among the needs listed in Table 3, those related to the detection and attribution of 
climate change impacts on shoreline changes and the identification of times of emergence 
are the most demanding in terms of precision and accuracy of modelling outcomes. In 
particular, a formal attribution of shoreline changes may not be attainable yet by means of 
a modelling approach (Le Cozannet et al., 2014). However, depending on the uncertainty 
framework implemented, one may reach different levels of confidence. 

Since climate change and, in particular, sea-level rise is recognized to be a major threat 
for many coastlines around the world, stakeholders and decision-makers require full 
information on uncertainty, high-end estimates, future projections of shoreline change, 
and relevant adaptation options within the context of current practices and governance 
arrangements. This often results in strong heterogeneity in shoreline change assessments. 
Current challenges involving science-policy interactions require (1) the definition of 
applicable methods to include climate change impacts on sandy coasts under, and (2) the 
need to transfer research developments into the realm of operational applications and 
regulation. For example, in the Coastal Risks Prevention Plans in France, the Plan to 
Promote the Environment for Adaptation to Climate Change in Spain, the Shoreline 
Management Plans in UK, and the Coastline Management Manual in the Netherlands. 
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