Public Deliverables
· Work Packages 1 – REVIEW OF EXISTING DATA SETS AND STAKEHORDERS NEEDS

D1A.- Climate data sets and related coastal exposure databases.
D1B.- Climate information needs from multi-sector stakeholders.
D1C.- Workshop on “Stakeholders demand of marine and coastal climate information”.
D1D.- Catalogue of potential coastal climate indicators for a pan-European coastal climate service web tool.

· Work Packages 2 – UNDERSTANDING REGIONAL CHANGES OF HISTORICAL CLIMATE OF SEA SURFACE DYNAMICS (SSDs)

D2A.- Historical climate variability of waves and sea level over Europe. .
D2B.- Review of methodologies for regional studies of sea surface dynamics.
D2C.- Scientific articles.
D2D.- A European Database from historical and present climate conditions.

· Work Packages 3 – PREDICTABILITY AND UNCERTAINTY OF SSDS ON SEASONAL, DECADAL AND LONG-TERM FUTURE CLIMATE PROJECTIONS

D3A.- Scientific articles.
D3B.- Synthesis report on the research about seasonal prediction of waves and surge.
D3C.- Potential skill of decadal predictions for wind waves and storm surges..
D3D.- Regional Climate projections of sea surface dynamics. .
D3E.- A European Database of of the future changes in sea surface dynamics  from regional climate projections .

· Work Packages 4 – COASTAL CLIMATE IMPACTS AND UNCERTAINTIES

D4A.- A review of existing modelling frameworks to assess climate change-driven shoreline changes.
D4B.- Prototype of a physical coastal impact model.
D4C.- A European database of coastal climate change impact indicators.
D4D.- Development of a framework to estimate both physical and sectorial coastal climate change impacts.
D4E.- Scientific articles.

· Work Packages 5 – PROTOTYPE OF A EUROPEAN COASTAL CLIMATE SERVICE

D5A.- The Infraestructure for coastal climate service.

Jupyter notebooks for ECLISEA API data access – HERE

Data Access – HERE

D5B.- Prototype of a coastal climate atlas.

ECLISEA GeoViewer –  HERE

Storm Surge Monitor – HERE 

Sea Level Monitor – HERE

D5C.- The Coastal climate Change impact tool.

Impact Tool – HERE

Scientific Publications
  • Camus, P., Herrera, S., Gutiérrez, J. M., & Losada, I. J. (2019). Statistical downscaling of seasonal wave forecastsOcean Modelling138, 1-12. (doi:10.1016/j.ocemod.2019.04.001)
  • Carson, M., Köhl, A., Stammer, D., Meyssignac, B., Church, J., Schröter, J., … & Hamlington, B. (2017). Regional sea level variability and trends, 1960–2007: A comparison of sea level reconstructions and ocean synthesesJournal of Geophysical Research: Oceans122(11), 9068-9091.(doi: https://doi.org/10.1002/2017JC012992)
  • Costa, W., Idier, D., Rohmer, J., Menendez, M., & Camus, P. (2020). Statistical Prediction of Extreme Storm Surges Based on a Fully Supervised Weather-Type Downscaling Model. Journal of Marine Science and Engineering8(12), 1028.( doi:10.3390/jmse8121028)
  • Le Cozannet, G., Bulteau, T., Castelle, B., Ranasinghe, R., Wöppelmann, G., Rohmer, J., … & Salas-y-Mélia, D. (2019). Quantifying uncertainties of sandy shoreline change projections as sea level rises. Scientific reports, 9(1), 1-11.(doi: :10.1038/s41598-018-37017-4)
  • Lemos, G., Menendez, M., Semedo, A., Camus, P., Hemer, M., Dobrynin, M., & Miranda, P. M. (2020). On the need of bias correction methods for wave climate projectionsGlobal and Planetary Change186, 103109.(doi: https://doi.org/10.1016/j.gloplacha.2019.103109)
  • Lemos, G., Semedo, A., Dobrynin, M., Menendez, M., & Miranda, P. M. (2020). Bias-corrected cmip5-derived single-forcing future wind-wave climate projections toward the end of the twenty-first centuryJournal of Applied Meteorology and Climatology59(9), 1393-1414.(doi: https://doi.org/10.1175/JAMC-D-19-0297.s1.)
  • Lemos, G., Menendez, M., Semedo, A., Miranda, P. M., & Hemer, M. (2021). On the decreases in North Atlantic significant wave heights from climate projections. Climate Dynamics, 1-24.(doi: https://doi.org/10.1007/s00382-021-05807-8)
  • Lemos, G., Semedo, A., Hemer, M., Menendez, M., & Miranda, P. M. (2021). Remote climate change propagation across the oceans–the directional swell signature. Environmental Research Letters.(doi: https://doi.org/10.1088/1748-9326/ac046b)
  • Lobeto,  H.,  Menendez,  M.,  &  Losada,  I.  J.  (2018).  Toward  a  Methodology  for  Estimating  Coastal Extreme Sea Levels From Satellite Altimetry. Journal of Geophysical Research: Oceans,123(11), 8284-8298..(doi:https://doi.org/10.1029/2018JC014487)
  • Lobeto, H., Menendez, M., & Losada, I. J. (2021). Future behavior of wind wave extremes due to climate change. Scientific reports11(1), 1-12.(doi: 10.1038/s41598-021-86524-4)
  • Melet, A., Meyssignac, B., Almar, R., & Le Cozannet, G. (2018). Under-estimated wave contribution to coastal sea-level rise. Nature Climate Change8(3), 234-239.(doi:  https://doi.org/10.1038/s41558-018-0088-y)
  • Nidheesh, A. G., Lengaigne, M., Vialard, J., Izumo, T., Unnikrishnan, A. S., Meyssignac, B. & de Boyer Montégut, C. (2017). Robustness of observation‐based decadal sea level variability in the Indo‐Pacific Ocean. Geophysical Research Letters44(14), 7391-7400.(doi:https://doi.org/10.1002/2017GL073955)
  • Tellez-Arenas, A., Quique, R., Boulahya, F., Le Cozannet, G., Paris, F., Le Roy, S., … & Robida, F. (2018). Scalable interactive platform for geographic evaluation of sea-level rise impact combining high-performance computing and WebGIS Client. In Communicating Climate Change Information for Decision-Making (pp. 163-175). Springer, Cham.(doi: https://hal-brgm.archives-ouvertes.fr/hal-02137523)
  • Thiéblemont,  R.,  Le  Cozannet,  G.,  Rohmer,  J.,  Toimil,  A.,  Álvarez-Cuesta,  M.,  &  Losada,  I.  J. (2021). Deep uncertainties in shoreline change projections: an extra-probabilistic approach applied to sandy beaches. Natural Hazards and Earth System Sciences Discussions, 1-24.(doi: https://doi.org/10.5194/nhess-21-2257-2021)
  • Thiéblemont,  R.,  Le  Cozannet,  G.,  Toimil,  A.,  Meyssignac,  B.,  &  Losada,  I.  J.  (2019).  Likely  and high-end  impacts  of  regional sea-level  rise  on  the  shoreline  change  of  European  sandy  coasts under a high greenhouse gas emissions scenario. Water,11(12), 2607. (doi:  https://doi.org/10.3390/w11122607).
  • Toimil, A., Camus, P., Losada, I. J., Le Cozannet, G., Nicholls, R. J., Idier, D., & Maspataud, A. (2020). Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatmentEarth-Science Reviews202, 103110.(doi:https://doi.org/10.1016/j.earscirev.2020.103110)
  • Weiss, C. V., Menendez, M., Ondiviela, B., Guanche, R., Losada, I. J., & Juanes, J. (2020). Climate change effects on marine renewable energy resources and environmental conditions for offshore aquaculture in EuropeICES Journal of Marine Science77(7-8), 3168-3182.(doi: 0.1093/icesjms/fsaa226)

ACCESS INTRANET AREA

LATEST NEWS

  • The project has officially ended in April 2021.
  • The scientific publications related to the project are now available HERE
  • The database of historical and climate projected Sea Surface Dynamics as well as coastal impact indicators are available HERE

ECLISEA

European advances on CLImate Services for Coasts and SEAs

TWEETS ABOUT ECLISEA


Project ECLISEA is part of ERA4CS

¿Need More Information?

Project ECLISEA is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by UC-IHC, HZG, BRGM, NCSRD and CNRS and co-funding  by the European Union.